From the conserved Kuramoto-Sivashinsky equation to a coalescing particles model
نویسندگان
چکیده
The conserved Kuramoto-Sivashinsky (CKS) equation, ∂tu = −∂xx(u+uxx+ux), has recently been derived in the context of crystal growth, and it is also strictly related to a similar equation appearing, e.g., in sand-ripple dynamics. We show that this equation can be mapped into the motion of a system of particles with attractive interactions, decaying as the inverse of their distance. Particles represent vanishing regions of diverging curvature, joined by arcs of a single parabola, and coalesce upon encounter. The coalescing particles model is easier to simulate than the original CKS equation. The growing interparticle distance l represents coarsening of the system, and we are able to establish firmly the scaling l̄(t) ∼ √ t. We obtain its probability distribution function, g(l), numerically, and study it analytically within the hypothesis of uncorrelated intervals, finding an overestimate at large distances. Finally, we introduce a method based on coalescence waves which might be useful to gain better analytical insights into the model.
منابع مشابه
Exact Solutions of the Generalized Kuramoto-Sivashinsky Equation
In this paper we obtain exact solutions of the generalized Kuramoto-Sivashinsky equation, which describes manyphysical processes in motion of turbulence and other unstable process systems. The methods used to determine the exact solutions of the underlying equation are the Lie group analysis and the simplest equation method. The solutions obtained are then plotted.
متن کاملApplication of Daubechies wavelets for solving Kuramoto-Sivashinsky type equations
We show how Daubechies wavelets are used to solve Kuramoto-Sivashinsky type equations with periodic boundary condition. Wavelet bases are used for numerical solution of the Kuramoto-Sivashinsky type equations by Galerkin method. The numerical results in comparison with the exact solution prove the efficiency and accuracy of our method.
متن کاملBoundary local null-controllability of the Kuramoto-Sivashinsky equation
We prove that the Kuramoto-Sivashinsky equation is locally controllable in 1D and in 2D with one boundary control. Our method consists in combining several general results in order to reduce the nullcontrollability of this nonlinear parabolic equation to the exact controllability of a linear beam or plate system. This improves known results on the controllability of Kuramoto-Sivashinsky equatio...
متن کاملOn the Stochastic Kuramoto-Sivashinsky Equation
In this article we study the solution of the Kuramoto–Sivashinsky equation on a bounded interval subject to a random forcing term. We show that a unique solution to the equation exists for all time and depends continuously on the initial data.
متن کاملTrajectory and Attractor Convergence for a Nonlocal Kuramoto-Sivashinsky Equation
The nonlocal Kuramoto-Sivashinsky equation arises in the modeling of the flow of a thin film of viscous liquid falling down an inclined plane, subject to an applied electric field. In this paper, the authors show that, as the coefficient of the nonlocal integral term goes to zero, the solution trajectories and the maximal attractor of the nonlocal Kuramoto-Sivashinsky equation converge to those...
متن کامل